

Design Specifications

When gains lag, standards slip, and timelines drag, the problem often isn't ambition—it's that breeding goals get “lost in translation” on the way to day-to-day decisions.

In NSIP's approach to breeding, design specifications are the translation layer between product development strategy (“what the next product must be”) and the machinery of prediction and optimization (“how to get it”). Rather than treating strategy as a slide deck concept and analytics as a separate exercise, NSIP formalizes strategy into testable targets and constraints: trait priorities, acceptable ranges, must-have thresholds, and operational realities (e.g., population sizes, parent reuse, resource limits). Those specifications then become the objective and guardrails that shape every downstream decision—what data matters most, what “success” looks like in a multi-trait context, and which candidate products are even eligible to be considered.

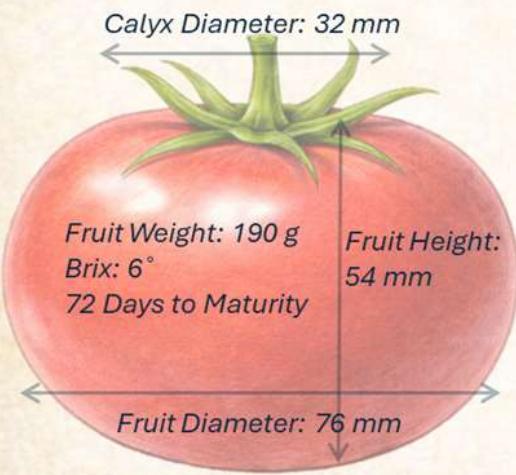
This approach is deeply consistent with how engineering matured during the 1900s: complex systems (manufacturing, aerospace, defense) became scalable when teams adopted formal specifications as the contract between intent and execution. Engineering drawings and standards codified requirements so design, fabrication, and verification could align—even when work was distributed across specialties and organizations. Systems engineering, which emerged in the mid-20th century, elevated this further by emphasizing explicit goals and verification against specifications rather than relying on intuition alone. Military and industrial specification practices, together with the development of Operations Research during WWII, institutionalized the idea that repeatability and accountability come from stating requirements unambiguously and designing processes to meet them.

NSIP's use of design specifications extends that best-practice engineering mindset into modern product development for plant breeding: it treats breeding decisions as an end-to-end engineered system where outcomes must satisfy a defined product profile, not just maximize a single metric. By defining the “spec” up front (the commercial trait bundle, diversity, and operating constraints) and then using prediction and optimization to execute against it, NSIP closes the gap that often exists between leadership's product vision and day-to-day technical choices in the breeding pipeline. The result is a reproducible and communicable decision process—one where stakeholders can see why a cross, an advancement set, or a trial design was chosen, what trade-offs were accepted, and how the choice maps back to product goals. In short, NSIP brings the rigor of 20th-century engineering specifications to 21st-century biological product development—turning strategy into a computable blueprint that guides prediction, optimization, and execution toward the same defined outcome.

NSIP Genetics website: <https://genetics.nsiplants.com/>

#PlantBreeding #PlantGenetics #AgTech #NSIPGenetics

Design Specifications


Design Specifications

Design Specifications

Optimization Model

Maximize marketable yield
relative to competitor

Resistance:
Cracking, ToMV, ToBRFV,
Late blight, Fusarium wilt

$$\max \quad \sum_{i \in \mathcal{I}} \left(\sum_{e \in \mathcal{E}} w_e \gamma_{e,i} \right) x_i - \lambda \sum_{i \in \mathcal{I}} \left(\sum_{e \in \mathcal{E}} v_e \alpha_{e,i} \right) x_i$$

$$\max \quad \frac{1}{\binom{K}{2}} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}: j > i} d_{ij} x_i x_j$$

s.t.

$$\sum_{i \in \mathcal{I}} x_i = K$$

$$x_i + x_j \leq 1 \quad \forall i < j \text{ with } d_{ij} < D$$

$$\sum_{i \in \mathcal{I}} g_{e^*,i}^{(t)} x_i \leq K \bar{G}_{e^*}^{(t)} \quad (\text{GEBV-lod})$$

$$\sum_{i \in \mathcal{I}} \beta_i^{E2} x_i \leq K T_\beta^{E2} \quad (\text{meet tester in E2})$$

$$\delta_i^{m,A} x_i \leq 0 \quad \forall i \in \mathcal{I}, \forall m \in \mathcal{M}_A \quad (\text{marker fixation})$$